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Weighted density functional theory of spherically inhomogeneous hard spheres
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Department of Physics, Shiraz University, Shiraz, 71454, Iran

~Received 13 September 2000; published 22 January 2001!

The weighted density functional theory of hard sphere fluids proposed by Tarazona is applied to spherically
inhomogeneous hard sphere fluids. The density profile of a hard sphere fluid around a hard sphere particle with
structureless hard wall and varying radii is obtained. Our results are compared with previously obtained
computer simulation with good agreement. We also calculate the density profile of a hard sphere fluid confined
to spherical pores. We compare these results with those obtained by Callejaet al., in which both theory and
computer simulation are used. In this case the results are also in agreement.
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I. INTRODUCTION

The structural properties of an inhomogeneous fluid w
a special geometrical symmetry, such as a fluid confined
planar slit @1–3#, a fluid bounded to a cylindrical channe
@4–6# or spherical cavities@7,8#, and a fluid around a large
hard sphere@9#, have been studied in the last two decad
Several theoretical methods have been applied for stud
these kinds of system@10#. There are two main theoretica
approaches for considering these types of problems: inte
equations based on liquid theories and density functio
theory @10–12#. A system of spherically inhomogeneou
hard spheres has been studied theoretically and by u
Monte Carlo simulation@13–15#. Attard @9# solved the inho-
mogeneous Ornstein-Zernike~OZ! equation and the
Triezenberg-Zwanzwig expression for the density profile
the vicinity of an isolated hard sphere particle. For fluids in
spherically symmetric external field, he showed that the
convolution integral becomes a simple algebraic equa
upon Legendre transformation@16#. Tang and Lu@13,14#
expanded the radial distribution function of an arbitrary p
tential around the hard sphere and obtained a general s
tion of the OZ equation. The density profile of an inhom
geneous hard sphere fluid around a large colloidal h
sphere was calculated by Degreve and Henderson@15# using
Monte Carlo simulation.

In the present article, we are interested in applying den
functional theory to spherically inhomogeneous hard sph
fluids. This theory has been widely used in recent years
consider the structure of confined or homogeneous flu
@2,3,17#. Henderson and Sokolowski studied adsorption
spherical cavities using density functional theory@18#. Rick-
ayzen and Augousti@1# introduced a modified hypernette
chain density functional containing a third order term in t
density, chosen to ensure that the density functional gives
correct bulk pressure. This theory was then applied to st
the density profile of hard spheres@1# and Lennard-Jone
fluids @19,20# confined to a slit. Callejaet al. @11# obtained
the density profile of hard sphere and Lennard Jones fl
confined to spherical pores, using both computer simula
and the density functional theory proposed by Rickayzen
Augousti. In the case of the hard sphere fluid, the result
the theory and simulation are in good agreement.

Tarazona and Evans@21# introduced a simple free energ
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functional, which includes both local thermodynamics a
short range correlation, to find the density profile of a flu
near a hard wall. This functional is closely related to th
studied by Nordholmet al. @22#, where the theory is referred
to as generalized van der Waals theory. Tarazona@23# devel-
oped a free energy density functional of the hard sphere fl
on a semiemprical basis following the preceding ideas@21#.
In this formalism one tries to get a quantitatively good d
scription of the hard sphere system in any likely situation
the same time making it possible to use it for the descript
of the reference system in a perturbative analysis of any
alistic model@24,25#. This functional theory, which is some
times called the weighted density functional approximat
~WDA!, can be used to describe an inhomogeneous sys
of hard spheres. Even for uniform density distribution
gives the good description of the structure. It also give
correct location of the solid-fluid phase transition, which im
plies a good description of the hard sphere crystal@23#. The
theory has been applied to obtain the density profile a
surface tension of hard sphere fluid in contact with a h
wall. The results are in good agreement with computer sim
lations, especially at high bulk density@23#.

The purpose of the present work is to apply the WD
theory introduced by Tarazona to find the density profile o
hard sphere fluid around hard spheres with various radii
compare the results with previous computer simulations@15#.
Furthermore, we study the structure of a hard sphere fl
confined to spherical pores and we compare our results
those obtained by Callejaet al. @11#, where they used both
theory and computer simulations.

The plan of this article is as follows. In Sec. II we outlin
the weighted density functional theory of the hard sph
fluid introduced by Tarazona and we derive the Eul
Lagrange equation for an inhomogeneous hard sphere fl
In Sec. III we discuss the weighted density functional theo
of a spherically inhomogeneous hard sphere fluid and
calculate the density profile of the hard sphere fluid near h
spheres of varying radii. In Sec. IV the density profile of
hard sphere fluid confined to a spherical cavity is calculat
Finally, in Sec. V we describe and discuss the results.

II. WEIGHTED DENSITY FUNCTIONAL OF HARD
SPHERES

Tarazona has introduced a free energy functional
smoothed density distributionr̄(r ), which, at each pointr , is
©2001 The American Physical Society02-1
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a nonlocal functional ofr(r ). Any sharp change in the rea
density will be smeared down inr̄(r ), which can be imag-
ined as the mean density around a particle at pointr and in a
volume that can be related to the range of interaction. T
Helmholtz free energy functional can be taken as

F@r#5Fid@r#1E drr~r !Dc„r̄~r !…, ~1!

whereFid@r# is the free energy functional of an ideal gas
temperatureT and is exactly given by the local density a
proximation:

Fid@r~r !#5kBTE drr~r !$ ln@l3r~r !#21%

5E drr~r !c id„r~r !…. ~2!

Here l5h(2pmkBT)21/2 is the thermal de Broglie wave
length,kB is the Boltzman constant, andDc(r) is the excess
free energy per particle above the ideal gas,

Dc~r![c~r!2c id~r!, ~3!

wherec(r) andc id(r) are the free energy per particle of th
liquid and ideal gas, respectively. In Eq.~1!, we chooseDc

as a functional ofr̄(r ). To avoid purely local treatment o
narrow peaks inr(r ) and to reach a really good descriptio
of direct correlation, we choose the functionr̄(r ) as
02120
e
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r̄~r !5E dr 8r~r 8!w„ur2r 8u,r̄~r !…. ~4!

This equation is an integral equation used to definer̄(r ) in
terms ofr(r ). We assume that the analytic dependency
the functionw(r ,r) on the density is given by

w~r ,r!5w0~r !1w1~r !r1w2~r !r21•••, ~5!

where the normalization condition ofw(r ,r) at any density
is

E drw~r ,r!51, ~6!

which implies

E drwi~r ,r!5H 1 for i 50

0 for i 51,2.
~7!

The weighting functionwi(r ) is obtained by requiring close
agreement, over a range of densities, of the two-particle
rect correlation function which is predicted by the Percu
Yevick approximation for the homogeneous hard-sph
fluid @23,24#,

w0~r !5
3

4ps3
u~s2ur u!, ~8!
w1~r !5H 0.47520.648~r /s!10.113~r /s!2, r ,s

0.288~s/r !20.92410.764~r /s!20.187~r /s!2, s,r ,2s

0, r .2s

~9!
tial
and

w2~r !5
5ps3

144
@6212~r /s!15~r /s!2#u~s2r !, ~10!

wheres is the diameter of the hard sphere andu(r ) is the
Heaviside step function. By using Eqs.~4! and ~5!, we can
derive the relation

r̄~r !5 r̄0~r !1 r̄1~r !r̄~r !1 r̄2~r !@ r̄~r !#2, ~11!

where

r̄ i~r !5E dr 8r~r 8!wi~ ur2r 8u!. ~12!

The functionr̄(r ) can be obtained from Eq.~11!,
r̄~r !5
2r̄0~r !

@12 r̄1~r !#1@ u12 r̄1~r !u224r̄0~r !r̄2~r !#1/2
.

~13!

The functional derivative ofr̄(r ) with respect tor(r ) can be
expressed as

dr̄~r !

dr~r 8!
5

w„ur2r 8u,r̄~r !…

12 r̄1~r !22r̄2~r !r̄~r !
. ~14!

In density functional theory, the grand canonical poten
V@r# and intrinsic~Helmholtz! free energy functionalF@r#,
both unique functionals of the one-particle densityr(r ), are
related by

V@r#5F@r#1E drr~r !@uext~r !2m#, ~15!
2-2
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wherem is the chemical potential of the system anduext(r )
is an external potential. The equilibrium density distributi
of the inhomogeneous fluid corresponds to the minimum
the grand potential satisfying

dV@r#

dr~r !
50, ~16!

which leads to the Euler-Lagrange equation

m2uext~r !5
dF@r#

dr~r !
. ~17!

According to Eq.~1!, the functional derivative ofF@r# with
respect to the density is

dF@r#

dr~r !
5m id„r~r !…1Dc„r̄~r !…

1E dr 8r~r 8!Dc8„r̄~r 8!…
dr̄~r 8!

dr~r !
, ~18!

where m id„r(r )… is the ideal-gas chemical potential an
Dc8„r̄(r 8)… is the first derivative ofDc„r̄(r 8)… with respect
to r̄(r 8).

III. DENSITY PROFILE OF A HARD SPHERE FLUID
AROUND A HARD SPHERE PARTICLE

We use Eq.~18! to find the density profile of a hard
sphere fluid around a hard sphere particle. In this case
external potential has spherical symmetry,

uext~r !5H `, ur u<R

0, ur u.R,
~19!

whereR is the radius of the hard sphere particle. The num
densityr(r ) is a function ofr only and

r~r !50, ur u,R. ~20!

Combining Eqs.~17! and ~18! and using the external poten
tial given by Eq.~19!, we have

m5m id~r !1Dc„r̄~r !…1E dr 8r~r 8!Dc8„r̄~r 8!…
dr̄~r 8!

dr~r !
.

~21!

For an inhomogeneous fluid in contact with a homogene
bulk fluid, the chemical potentialm is equal to that of the
homogeneous bulk fluid, and hence using Eq.~21! we have

m id„r~r !…1Dc„r̄~r !…1E dr 8r~r 8!Dc8„r̄~r 8!…
dr̄~r 8!

dr~r !

5m id~r0!1Dc~r0!1r0Dc8~r0!, ~22!

whereDc8(r0) is the derivative ofDc(r0) with respect to
r0. If we use the definition ofm(r0) andm id(r0),
02120
f
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m id~r0!5kBT ln l3r0 , ~23a!

m id„r~r !…5kBT ln l3r~r !, ~23b!

we obtain the density of the hard sphere fluid,

r~r !5r0expH 2bFDc„r̄~r !…

1E dr 8r~r 8!Dc8„r̄~r 8!…
dr̄~r 8!

dr~r !

2Dc~r0!2r0Dc8~r0!G J . ~24!

We insertdr̄(r 8)/dr(r ) from Eq.~14! in Eq. ~24! and obtain

r~r !5r0expH 2bFDc„r̄~r !…1E dr 8r~r 8!Dc8„r̄~r 8!…

3
w„ur2r 8u,r̄~r 8!…

12 r̄1~r 8!22r̄2~r 8!r̄~r 8!
2Dc~r0!

2r0Dc8~r0!G J . ~25!

If we want to find the density profile around the ha
sphere particle, it is required to calculate the integral in E
~25! numerically. We insert the functionw„ur2r 8u,r̄(r 8)…
from Eq. ~5! in the integral given in Eq.~25! and write

I ~R,r !5E
R1s/2

` dr 8r~r 8!Dc8„r̄~r 8!…

12 r̄1~r 8!22r̄2~r 8!r̄~r 8!
@w0~ ur2r 8u!

1w1~ ur2r 8u!r̄~r 8!1w2~ ur2r 8u!r̄2~r 8!#. ~26!

We calculate each integral in Eq.~26! as

E dr 8g~r 8!wi~ ur2r 8u!

52pE dr8r 82E
21

1

djg~r 8!wi~ ur2r 8u!

52pE dr8r 82 g~r 8!Wi~r ,r 8!, ~27!

where

ur2r 8u25r 21r 8222jrr 8, ~28!

Wi~r ,r 8!5E
21

1

djwi~ ur2r 8u!5
1

rr 8
E

ur2r8u

ur1r8u
dr9r 9wi~r 9!,

~29!

andg(r 8) is an arbitrary function ofr 8. Equation~26! can be
written as
2-3
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I ~R,r !52pE
R1s/2

` dr8r 82 r~r 8!Dc8„r̄~r 8!…

12 r̄1~r 8!22r̄2~r !r̄~r !
@W0~r ,r 8!

1W1~r ,r 8!r̄~r 8!1W2~r ,r 8!r̄2~r 8!#, ~30!

and the density profile is given by

r~r !5r0 exp$2b@Dc„r̄~r !…1I ~R,r !2Dc~r0!

2r0Dc8~r0!#%. ~31!

We calculate the density profiler(r ) for the caseR
5s/2 and h5pr0s3/650.386; then we obtain the radia
distribution functiong(r )5r(r )/r0 for a hard sphere fluid
In Fig. 1, the functiong(r ) is displayed and compared wit
the Monte Carlo simulation results of Degreve and Hend
son @15# and those obtained by Carnahan and Starling@26#.
The reduced density profilegw(r )5r(r )/r0 for a hard
sphere fluid near a large hard sphere particle is calculated
s/R50.0850 andh50.30. In Fig. 2, we compare the resu
with those obtained by computer simulation@15#. The origin
in Fig. 1 and 2 is taken at the wall of the particle.

IV. HARD SPHERE FLUID CONFINED
TO SPHERICAL PORES

We assume the hard sphere fluid is confined to a sphe
cavity with a hard structureless wall; thus

uext~r !5H `, ur u>R

0, ur u,R,

FIG. 1. Radial distribution function of the hard sphere fluid
h50.386. The solid line corresponds to the Tarazona the
~present work!, the solid circles are taken from the Monte Car
~MC! simulation of Degreve and Henderson, and the dashed
corresponds to the Carnahan-Starling~CS! calculation.
02120
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whereR is the radius of the cavity, the number density is
function of r only, and

r~r !50, ur u.R.

Again, we can use Eq.~31! to find the density profile, but Eq
~30! is changed to the expression:

I ~R,r !52pE
0

R2s/2 dr8r 82 r~r 8!Dc8„r̄~r 8!…

12 r̄1~r 8!22r̄2~r !r̄~r !
@W0~r ,r 8!

1W1~r ,r 8!r̄~r 8!1W2~r ,r 8!r̄2~r 8!#. ~32!

For the reduced densityr0* 5s3r050.62 andR55s, we
calculate the density profile inside the cavity and we co
pare our results with those obtained by Callejaet al. @11#,
who applied both density functional theory and compu
simulation. The result are displayed and compared in Fig
The same calculation is done forr0* 5s3r050.75 and the
results are compared in Fig. 4. As is seen in both cases
results obtained by Tarazona theory are in agreement
those obtained by other methods.

V. CONCLUSIONS

The weighted density functional theory for a hard sph
fluid near a hard wall@23#, proposed by Tarazona, has be
extended to a spherically inhomogeneous hard sphere fl
The theory appears to be fairly accurate for describing
structure of this kind of inhomogeneous hard sphere flu
According to the results obtained in this and other artic
such as@23,27#, one can claim that the density function

t
y

e

FIG. 2. The normalized density profile about the hard sph
particle, where the inverse diameter of the particle iss/R
50.0850 andh50.30. The solid line corresponds to present wo
and the dotted line is taken from the Monte Carlo~MC! simulation
of Degreve and Henderson.
2-4
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theory introduced by Tarazona works quite well for a varie
of inhomogeneous hard sphere fluids. Of course, these
culations may be used for the hard sphere part of a fluid w
interaction such as a charged hard sphere, a dipolar

FIG. 3. The reduced density profiler* (r )5r(r )s3 inside the
cavity where the radius of the cavity isR55s andr0* 50.62. The
solid line corresponds to the Tarazona theory, the solid circles
taken from the Monte Carlo~MC! simulation, and the dashed line
taken from theory, both from Callejaet al @11#.
ol.
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sphere, a hard sphere with Yukawa tail, a sticky hard sph
fluid, and others. Kim and Suh@24# have considered suc
fluids confined to a planar slit. They introduced a dens
functional perturbative approximation that is based on b
the weighted density approximation for the hard sphere c
tribution and the density functional of Rickayzen an
Augousti@1#. We plan to apply these calculations to inhom
geneous fluids with special spherical symmetries.

re

FIG. 4. Same as Fig. 3 except forr0* 50.75.
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